A la COMISIÓN PRESIDENCIAL PARA LA DEFENSA, REESTRUCTURACIÓN Y REORGANIZACIÓN DE LA INDUSTRIA PETROLERA"ALÍ RODRÍGUEZ ARAQUE" (LA COMISIÓN): Estimados Compatriotas, en estos días un Ingeniero de PDVSA que goza de mi Alta Estima tanto por sus cualidades personales como por sus cualidades profesionales, solo voy a decir sus iniciales, VG, cuando le pregunté su opinión sobre el THAI-CAPRI, "disparó desde la cintura" y me dio esta RESPUESTA: "Ahorita PDVSA está enfocada a poner en producción a los pozos Tipo 2 (pozos con problemas pequeños y que se acondicionan sin necesidad de traer un taladro)". Luego de cierto intercambio virtual, civilizado cuando uno trata con una persona como este Ingeniero, llegamos a la conclusión que una empresa de la dimensión de PDVSA tiene que tener una ESTRATEGIA que comprenda planes a Corto, Mediano y Largo plazo. Sin duda lo que me dijo VG se corresponde con lo del Corto Plazo y el THAI-CAPRI, según mi opinión, para Mediano Plazo y la Conversión de la mayor parte de la producción del petróleo de La Faja para convertirla en KILOVATIOS, para Largo Plazo. ¿O no?
Como supongo que ya Ustedes pusieron a algunos ingenieros a ver las potencialidades del THAI-CAPRI y conociendo la reacción de los jefes de PDVSA por haber vivido en ese mundo por más de 30 años inmediatamente se cierran a nuevas ideas. Salen preguntas y dudas como estas: 1) THAI-CAPRI no es comercial, 2) Muéstrame 30 proyectos y los sitios donde se ha usado, exagero; 3) No podemos seguir dependiendo de tecnología externa y THAI-CAPRI, lo es; 4) Tiene que ser aprobado, primero, por el INTEVEP; 5) Para que todo no sea negativo, sale un Jefe y dice "Ya, Yo leí una cuantas tesis de grado y muchos "papers" técnicos presentados en Congresos Petroleros Mundiales y creo que debemos dar al THAI-CAPRI y, por lo tanto, recomiendo que llamemos, en primera instancias, a todos los socios extranjeros de las Empresas Mixtas de La Faja y les EXIGIMOS que en un lapso de 6 meses nos presenten un Anteproyecto de esta tecnología". Me viene a mi mente el proyecto del descubrimiento de petróleo más grande de los últimos 40 años que se hizo en el Oriente de Venezuela; me refiero al Campo El Furrial. El Gerente de Producción de la vieja LAGOVEN, HM, después de 3 desviaciones del pozo por problemas mecánicos, PUMMM, el Gran Descubrimiento. Más de un gerente con la segunda desviación de un pozo hubieran "arrugado", pero no, el Geólogo HM, con el arrojo que lo caracterizó fue una, dos y tres veces a la Junta Directiva a pedir más dinero para seguir con el proyecto y al final su decisión compensó, con creces, la inversión que se hizo con el Pozo Furrial-1X.
Tengo la esperanza que en la PDVSA actual hayan muchos HM y tengo fe de que alguno de ellos le darán la oportunidad al THAI_CAPRI. Como saben, ya, los beneficios de esta tecnología ya las mencioné en mi escrito Parte 52
Con este escrito me estoy adelantando a dar respuesta a las preguntas que ya mencioné y para eso les he proporcionado tesis de grado, "papers". experimentos de laboratorio y proyectos de campo tanto de Combustión En Sitio, como de THAI-CAPRI.
Por fortuna, no tuve que romperme la cabeza buscando por aquí y por allá para demostrarle lo que es la Combustión En Sitio. El documento que sigue, IN-SITU COMBUSTION HANDBOOK - PRINCIPLES AND PRACTICES, en español MANUAL DE COMBUSTIÓN EN SITIO – PRINCIPIOS Y PRÁCTICAS, creo Yo, y para quien quiera creerlo, el mas importante que se ha escrito sobre Combustión En Sitio, en los últimos 22 años, por estas tres razones:
-
Nos presenta la historia de la Combustión En Sitio. Como empezó, los problemas que presentó, las pruebas de laboratorio, todos, o casi todos, los proyectos que se han desarrollado, éxitos y fracasos, aspectos técnicos considerados, etc, etc. y futuro de la tecnología. Con esto se le responderá a todos los que tienen duda sobre lo que es Combustión En Sitio y sus aspectos relacionados. Si después de leerlo, todavía, siguen creyendo que la Combustión En Sitio y su EVOLUCIÓN, hasta llegar al THAI-CAPRI, no tiene vida; sin duda podemos incluirlos entre los TRUMPISTAS, incluido el propio TRUMP, aún con todas las pruebas presentadas, que todavía creen que las elecciones de Estados Unidos que eligieron a Biden el año pasado, les fue robada. Así son las cosas.
-
Aún cuando fue elaborado por profesional privado, fue a través de una contratación de una entidad oficial del gobierno de los Estados Unidos como lo es el Departamento de Energía, uno, inocentemente, pudiera preguntar ¿Por qué el Gobierno gastó una cantidad de dólares para que le pusieran en blanco y negro la tecnología de Combustión En Sitio si esta careciera de importancia? Por favor, lean el manual para que se formen su propia idea. Aquel que quiera el Manual, con gusto se lo envío. También, lo pueden conseguir Internet, buscando en Google por su título.
-
PDVSA Petróleo, S.A. y las Empresas Mixtas, que operan en La Faja, no tienen porqué gastar tiempo en buscar lo que es Combustión En Sitio. Aún así, ni estados Unidos, ni Rusia, ni China, ni la India, pensando bien, no son ignorantes. Estoy seguro, 100 por ciento, que todos los centros de investigación petrolera de esos países saben no solo lo que es Combustión En Sitio, sino, también, lo que es THAI-CAPRI y, también, saben que en los alrededores del Polo Norte hay Petróleo y lo explotan; que en el fondo del océano hay cantidades de HIDRATOS DE GAS y ya lo producen; que ya explotan no solo Shale Oil, sino, también, OIL SHALE, si OIL SHALE. Así mismo, otras tecnologías, que se aplican para producir petróleo pesado y extrapesado. Entonces, no vamos, Nosotros, a poner en duda que la Combustión En Sitio es viable. Ojalá que no se pongan en la misma onda, de aquellos que creen que el transporte automotor ELÉCTRICO no tiene vida y que la Industria Petrolera, como la de hoy, durará unos 400 años más. Esas son las diferencias entre países que piensan con el FRENTEVISOR y no con el RETROVISOR. Espero que ninguno se ofenda.
IN-SITU COMBUSTION HANDBOOK - PRINCIPLES AND PRACTICES
Final Report
November 1998
By Partha S. Sarathi
January 1999
Performed Under Contract No. DE-AC22-94PC91 008
(Original Report Number NIPER/BDM-0374)
BDM Petroleum Technologies
BDM-Oklahoma, Inc.
Bartlesville, Oklahoma
National Petroleum Technology Office
U.S. DEPARTMENT OF ENERGY
Tulsa, Oklahoma
DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 1" disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by,the United States Govern ment or any agency thereof. The views and opinions of authors expressed herein do not necessariIy state or reflect those of the United StatesGovernment.
Como se que muchos de los lectores, de este escrito, hasta aquí, tienen muchas preguntas, a continuación, les pongo a disposición la Tabla de Contenido del Manual de Combustión en Sitio y es, casi seguro, que muchas de sus incógnitas estarán contestadas.
Table of Contents
In-Situ Combustion Handbook — Principles and Practices ................xv
Abstract .....................................................................................................xv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
CHAPTER 1 ...............................................................................................1
Introduction .Background .......................................................................l
Purpose and Scope of the Handbook ...................................................... 1
Organization of the Handbook ...................................................................2
Early History and Development of the In-Situ Combustion Process .........2
Current Status of In-Situ Combustion ........................................................6
Global ISC Activities ..................................................................................6
TABLE 1.1 — Statistics of World’s Active In-Situ Combustion Projects ....7
U.S. ISC Activities ......................................................................................9
TABLE 1.2 — U.S. In-Situ Combustion Activities .................................... 10
TABLE 1.3 — Geographical Distribution of U.S. Combustion Projects ...12
TABLE 1.4 — U.S. In-Situ Combustion Project Activities —
Breakdown by Majors and independents ............................................. 17
Assets and Liabilities of In-Situ Combustion Process ............................. 18
Assets of In-Situ Combustion Process .................................................... 18
TABLE 1.5 — Recovery Efficiency of In-Situ Combustion Compared
to Other EOR Methods ........................................................................2O
Limitations of Combustion Process .........................................................2O
References ..............................................................................................22
CHAPTER 2 — Fundamentals of Fireflooding .............*........*..........*..25
introduction ..............................................................................................25
In-Situ Combustion Processes ................................................................25
Dry Combustion .......................................................................................25
FIGURE 2.2 — Schematic of Temperature Profile for Dry
Combustion ..........................................................................................27
Wet Combustion ......................................................................................29
FIGURE 2.3 — Schematic of Temperature Profile for an Incomplete
(Partially Quenched) Wet Combustion Process ...................................30
iFIGURE 2.4 — Schematic of Temperature Profile for a Normal
Wet Combustion Process Without Convective Heat Front ..................30
FIGURE 2.5 — Schematic of Temperature Profile for Super Wet
Combustion Process ..........................................................................3l
FIGURE 2.6 — Schematic of Saturation Profile for the Incomplete
Wet Combustion Process .....................................................m..............3l
FIGURE 2.7 —Schematic of Saturation Profile for Normal Wet
Combustion Process ...........................................................................32
FIGURE 2.8 — Schematic of Saturation Profile for Super Wet
Combustion Process ............................................................................32
Reverse Combustion .............................................................................34
Other Processes Variation .......................................................................35
References .......s......................................................................................36
CHAPTER 3 — Kinetics And Combustion ~be Studies ....................37
Introduction ........... ..................................................................................37
Chemical Reactions Associated with In-Situ Combustion .......................37
Low Temperature Oxidation ....................................................................38
FIGURE 3.1 — Schematic of Dry Combustion Temperature
Profile Showing the General Effect of Temperature on Oxygen
Uptake Rate for Heavy Oils and the Negative Temperature
Gradient Region ...............................................................= ........39
The Pyrolysis Reactions .........................................................................4o
High Temperature Oxidation ....................................................................42
Reaction Kinetics .....................................................................................43
Factors Affecting Oxidation Reactions .....................................................46
Tools and Techniques .............................................................................47
Thermal Analysis Techniques ..................................................................48
TGAand DTATechniques .......................................................................48
FIGURE 3.2 — Typical DTG Thermograms Showing Effect of
Sudace Area on Crude Oil Combustion ...............................................49
FIGURE 3.3 — Typical DTG Thermogram for a California Heavy
Oil-Sand Mixture (After Mamora et al., 1993) .......................................49
FIGURE 3.4 — Typical DTG Thermogram for a Venezuelan
Extra Heavy Oil-Sand Mixture ..............................................................50
Determination of Kinetic Parameters from Thermogram .,.......................51
FIGURE 3.5 — Typical DTG Thermogram Showing Various
Oxidation Regime .................................................................................55
FIGURE 3.6 — Schematic Diagram of a Differential Thermal
Analyzer (DTA) Cell .............................................................................56
ii
IFIGURE 3.7 — Schematic Diagram of a High Pressure
Thermal Analysis Experimental Set-up ................................................56
Shortcomings of Using TGA / DSC Techniques to Evaluate
ISC Parameters ....................................................................................57
TABLE 3.1 — Resource Requirements of Combustion Tube
and TGA / DSC Experiments ...............................................................58
Accelerating Rate Calorimeter (ARC) ......................................................59
FIGURE 3.8 — High Pressure Accelerating Rate Calorimeter
(ARC) Set-Up ......................................................................................59
FIGURE 3.9 — Schematic of Flowing Arc System Set-up ......................61
ARC Theo~ .............................................................................................6l
Limitations of ARC Tests .........................................................................63
Effluent Gas Analysis (EGA) Technique ..................................................64
FIGURE 3.10 — Schematic of Stanford University’s Kinetic Cell ...........65
FIGURE 3.11 — Schematic of University of Calgary’s Ramped
Temperature Oxidation Cel ..................................................................66
FIGURE 3.12 — Schematic of Stanford University’s In-Situ
Combustion Experimental Set. Up ........................................................67
FIGURE 3.13 — Example of a Ramped Temperature Oxidation
(RTO) Temperature Profile Showing LTO Response ...........................68.
FIGURE 3.14 — Example of a RTO Temperature Profile Showing
HTO Response ....................................................................................68
FIGURE 3.15 — Example of a RTO Temperature Profile Showing
HTO Response and Low Oil Recovery ...............................................69
Combustion Tube Tests ...........................................................................7O
introduction ..............................................................................................7O
FIGURE 3.16 — Schematic of a Typical Combustion Tube Details ........70
Comments About Combustion Tube Tests .............................................’.71
Combustion Tubes ...................................................................................74
Description of Combustion Tube Test Set-up ..........................................74
TABLE 3.2 — Dimensions of Combustion Tube Employed in
Selected In-Situ Combustion Laboratories ...........................................75
Operating Procedures ..............................................................................76
Interpretation of Combustion Tube Data .................................................79
FIGURE 3.17 — Comparative Temperature Profiles ...............................79
FIGURE 3.18 — Probe Temperature Profile as a Function of
Time for a Dry In-Situ Combustion Tube Run ......................................80
FIGURE 3.19 — Dry Combustion: Schematic Temperature
Profile Downstream from the Temperature Peak .................................8l
...
111FIGURE 3.20 — Temperature Profile for Dry Combustion,
Reflecting the Effect of Native Core Material ........................................82
FIGURE 3.21 — Wet Combustion: Schematic Temperature
Profile Downstream from the Temperature Peak .................................82
Analysis of Combustion Tube Data .........................................................83
High Temperature Combustion Stoichiometry .........................................83
Examples of Combustion Parameter Calculation
from Typical Product Gas Composition ...................................’ ............91
Modifications of Equation to Account for Reactions Other
Than Assumed High Temperature Combustion .................................100
Example Calculation to Illustrate Combustion of an Oxidized Fuel .......103
Feed Gas Composition (mole ?40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Elemental Analysis of Fuel ....................................................................l O6
Moles Product Gas on a Dry Basis ........................................................l07
Composition of Product Gas on Dry Basis ............................................107
Conventional Combustion Parameters .................................................. 108
Feed Gas Composition (mole Y~)...........................................................
Product Gas Compositions (mole Yo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculated Gas-Phase Parameters .......................................................
Feed Gas Composition (mole YO) . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Gas Compositions (mole 0/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculated Gas-Phase Parameters .......................................................
Analysis of Air and Fuel Requirements for Combustion Tube Tests .....
References ............................................................................................
CHAPTER 4 — Evaluation of an In-Situ Combustion Prospect ......133
introduction ............................................................................................l33
Geologic Characterization ..................................................................... 133
Lateral and Vertical Extent of Reservoirs. .............................................134
Vertical Depth ........................................................................................l35
Resewoir Thickness ..............................................................................l36
Structural Attitude and Dip ..................................................................... 136
Overburden Competence .....................................................................l37
Reservoir Heterogeneities .................................................................l37
Rock Properties .....................................................................................138
Sand Uniformity and Texture ......... .......................................................
Permeability ...........................................................................................
Porosity .............................................................................................
Oil Saturation ........................................................................................
Iv Composition of Reservoir Matrix ............................................................ 140
Effect of Well Spacing ............................................................................ 141
Prospect Screening ............................................................................... 142
References ............................................................................................ 144
CHAPTER 5 — Engineering of an In-Situ Combustion Project ......147
In-Situ Combustion Performance Parameters ....................................... 147
Fuel Deposit ...........................................................................................l47
FIGURE 5.1 — Schematic of a Laboratory Combustion Tube,
Depicting Various Combustion Process Mechanisms ........................ 148
FIGURE 5.2 — Relationship Between Crude Gravity and
Fuel Deposit ....................................................................................... 149
FIGURE 5.3 — Minimum Fuel Content Required to Support
a Fixed Frontal Temperature ..............................................................l5O
Air Requirements ................................................................................... 150
FIGURE 5.4 — Relationship Between Oil Gravity and Air
Requirement ....................................................................................., 151
FIGURE 5.5 — A Requirement for Combustion ..................................152
FIGURE 5.6 — The Theoretical Air Required to Move a Barrel
of Oil in the Reservoir is Shown as a Function of Fuel Content
and Porosity ....................................................................................... 152
Air Flux ................................................................................................... 153
FIGURE 5.7 — Relationship Between Crude Gravity and Required
Minimum Air Flux ................................................................................ 153
FIGURE 5.8 — Point Velocity of Combustion Front Movement as
Described by Accompanying Equation ............................................... 154
Air-Oil Ratio ...........................................................................................l54
FIGURE 5.9 — Theoretical Ak-Oil Ration vs Fuel Deposit ...................155
FIGURE 5.10 — Air-Oil Ratio as a Function of Oil in Place and
Fuel Consumption .............................................................................. 156
Injection Pressure ..................................................................................l57
Oil Recovery Rate ..................................................................................l57
In-Situ Combustion Project Design ........................................................ 158
Nelson-McNeil Method .......................................................................... 158
TABLE 5.3 — Relation between Dimensional Flow Term i~ and
Areal Sweep Efficiency ....................................................................... 162
FIGURE 5.11 — Air Requirements for Inverted Developed 5-Acre,
5-Spot Well Pattern with 30 ft. Formation Thickness ......................... 163
TABLE 5.4 — Field Data ....................................................................... 169
In-Situ Combustion: Oil — Volume Burned Method .............................. 176
V FIGURE 5.12 — Estimated Oil Recovery vs Volume Burned ................176
Methodology ..........................................................................................l78
TABLE 5.5 — Equations to Calculate In-Situ Combustion
Performance ........................... ..........................................................179
Satman — Brigham Correlations ...........................................................l82
Correlation Technique ...........................................................................182
FIGURE 5.13 — Incremental Oil Production vs Cumulative Air
Injection for Fieldwide Combustion Tests ........................................... 183
FIGURE 5.14 — Dimensionless Cumulative Incremental Oil
Production vs Air Injection for Fieldwide Combustion Tests) .............184
FIGURE 5.15 — Effects of Fuel Burned, Rock Volume, and
Oxygen Utilization on Cumulative Incremental Oil vs Ak
Injection for Fieldwide Combustion Tests ........................................... 186
FIGURE 5.16 — Multiple Linear Regression Analysis and Data
on Figure 5.16 ...................................................................................l88
FIGURE 5.17 — First Correlation Curve for Dry In-Situ Combustion
Field Cases .........................................................................................l89
FIGURE 5.18 — Data for the Second Correlation Curve ......................191
FIGURE 5.19 — Second Correlation Curve for Dry In-Situ
Combustion Field Cases ...................................................................192
Application of Correlation ....................................................................... 192
FIGURE 5.20 — Cumulative Incremental Oil Production vs
Cumulative Air Injection for Pilot Dry Combustion "Tests ....................193
FIGURE 5.21 — Effects of Fuel, Rock Volume, and Oxygen
Utilization for Pilot Dry Combustion Tests ..........................................l94
FIGURE 5.22 — Dry Combustion Field Performance Prediction
Using Second Correlation ...................................................................195
References ............................................................................................l97
CHAPTER 6 — In-Situ Combustion Case Histories and
Performance Analysis .........................................................................199
Miga Fireflood ........................................................................................l99
Reservoir Description ............................................................................200
TABLE 6.1 — Miga Thermal Recovery Project (Eastern
Venezuela Pz_qSand) ......@..............................................................#...20l
Project Production Response ................................................................202
Conclusions ...........................................................................................203
Cotton Valley Air Injection Project .........................................................203
TABLE 6.2 — June 1981 Status of the Cotton Valley Air
Injection Project ..o......................m...m....................................................205
West Newport Fireflood .........................................................................205
viProducing Wells .....................................................................................206
Injection Wells ........................................................................................207
Production Facilities ...............................................................................207
Comments .............................................................................................208
TABLE 6.3 — Mobil (General Crude) West New Port Fireflood ............209
Paris Valley Combinations Thermal Drive .............................................212
FIGURE 6.1 — Paris Valley In-Situ Combustion Project Well
Pattern Map ........................................................................................213
TABLE 6.4 — Average Reservoir and Combustion Characteristics
of Ansberry Sand Paris Valley Field G..................................................2l4
Project Performance Analysis ................................................................2l6
Bodcau In-Situ Combustion Project .......................................................2l8
FIGURE 6.2- Location Map of Bodcau Fireflood ................................219
FIGURE 6.3 — Project Pattern Map of Bodcau Fireflood Project .........219
TABLE 6.5 — Reservoir And Fluid Characteristics of Nacatoch
Sand, Bodcau Lease, Bellevue Field, Bossier Parish, LAS.................220
Project Performance Analysis ................................................................222
General Observations ............................................................................224
References ............................................................................................227
CHAPTER 7 — Air Compression Plant ..............................................229
introduction ............................................................................................229
FIGURE 7.1 — A Compression Equipment for Fireflooding ................230
Compressor Types ................................................................................231
FIGURE 7.2 — Principle Compressor Types ........................................232
FIGURE 7.3 — Typical Application Ranges of Compressor Types .......232
FIGURE 7.4 — Comparison of Centrifugal and Reciprocating
Compressor Efficiencies .....................................................................233
FIGURE 7.5 — Compressor Power Requirements at Various
Compression Ratios ...........................................................................233
TABLE 7.1 — Compressor Types Employed in the U.S.
ISC Projects .......................................................................................235
Relative Comparison of Various Compressor Types .............................238
Advantages and Disadvantages of a Centrifugal Compressor ..............239
Advantages and Disadvantages of a Reciprocating Compressor .........240
Advantages and Disadvantages of Rotary Screw Compressors ...........241
Reasons for the Popularity of Reciprocators in ISC Operation .............242
Basic Terms and Definitions of Compressor Terminology ....................243
Basic Relationships ...............................................................................245
Vii Principles of Compression .....................................................................245
Compression Cycles ..............................................................................248
Theoretical Horsepower .........................................................................250
Adiabatic Compression ..........................................................................251
Polytropic Compression .........................................................................253
Isothermal Compression ........................................................................255
Reciprocating Compressor ....................................................................256
introduction ............................................................................................256
Description .............................................................................................257
FIGURE 7.7 — Basic Construction of Reciprocating Compressor ........257
FIGURE 7.8 — Diagram Illustrating Ideal Reciprocating
Compressor Cycle ........................................................................259
FIGURE 7.8A— Intake .........................................................................260
FlGURE7.8B .Compression ..............................................................26l
FIGURE 7.8C — Discharge ...................................................................262
FIGURE 7.8D — Expansion ..................................................................263
FIGURE 7.8 E—Suction .......................................................................264
Reciprocating Compressor Performance ...............................................264
FIGURE 7.9 — P-V Diagram Showing Clearance Volume ....................265
FIGURE 7.10 — Typical Compression Ratio vs Volumetric
Efficiency Curves for a Reciprocating Compressor ............................267
Discharge Temperature .........................................................................268
FIGURE 7.11 — Chart to Estimate Theoretical Discharge
Temperature from a Cylinder .............................................................269
Multi Staging .................i........................................................................270
Compressor Horsepower Estimation .....................................................271
FIGURE 7.12 — Horsepower Curves for Reciprocating Compressor
for Different ‘K ...................................................................................272
FIGURE 7.13 — Horsepower Curves for Reciprocating Compressor ...273
FIGURE 7.14 — Horsepower Curves for Reciprocating Compressor ...274
FIGURE 7.15 — Correction Factor Curves for Low Intake Pressure ....275
FIGURE 7.16 — Reciprocating Compressor — Shaft Horsepower
Estimation Curves ..............................................................................275
Reciprocating Air Compressor for ISC services ....................................277
Packaged Compressors ........................................................................278
Process Compressors ....................................................................... ...278
Reciprocating Compression Selection ...................................................279
TABLE 7.2 — Reciprocating Compressor Inquiry Sheet .......................28l
Centrifugal Compressors.......................................................................z8s
...
Vlll. — —
Definitions ..............................................................................................283
Centrifugal Compressor Characteristics ................................................285
FIGURE 7.17— Cutaway of a Centrifugal Compressor ........................286
Operating Characteristics ......................................................................287
Demand Load ........................................................................................287
FIGURE 7.18 — Typical Curves, Illustrating Three Types of
Centrifugal Compressor Loading (Rollins, 1989) ...............................288
Application to Load ................................................................................288
FIGURE 7.19 — Performance Characteristics of Centrifugal vs
Reciprocating Compressor (Rollins, 1989) .........................................289
FIGURE 7.20 — Characteristic Curves of a Centrifugal Compressor
and a Reciprocating Compressor, Superposed Upon DemandLoad Curves ........................................................................................290
Controlling Pressure or Capacity...........................................................290
FIGURE 7.21 — Characteristic Curves of a Centrifugal Compressor
at Variable Speed, Superposed Upon Demand-Load ........................291
Selection of Unit .....................................................................................292
Approximate Selections Limitations .......................................................293
TABLE 7.3 — Centrifugal Compressor Inquiry Sheet ...........................295
TABLE 7.3 (cont.) — Centrifugal Compressor Inquiry Sheet ................296
Sizing Consideration .............................................................................."297
FIGURE 7.22 — Density of Moist Ah’ as Function of Temperature .........300
Humidity .................................................................................................301
FIGURE 7.23 — Specific Volume of Saturated Air-Water Vapor
Moistures at Saturation Temperature and Dry Air at 70°F
(21.1°c) ..........................................................................................30l
Specify Ambient Conditions ...................................................................302
Centrifugal Air Compressor Characteristic ..........................................., 302
FIGURE 7.24 — Centrifugal Compressor Characteristic Curve ............303
Weight or Volume Flow .........m................................................................304
Effect of Inlet Air Temperature ...............................................................305
FIGURE 7.25 — Effect of Inlet Air Temperature on Flow and Power
in a Centrifugal Compressor ..............................................................308
Effect of Inlet Air Pressure .....................................................................308
FIGURE 7.26 — Inlet Pressure Effects on Centrifugal Compressor
Performance ......................................................................................3O8
Effect of Cooling Water Temperature ....................................................309
FIGURE 7.27 — Effect of Cooling Water Temperature on the
Centrifugal Compression Performance ..............................................309
Designing the Compressed Ah- System .................................................310
Ix Establishing Injection Rate and Pressure ..............................................312
Selection of Compressor and Prime Movers .........................................312
Package or Process Compressors ........................................................3l5
Locating the Compressor Station ..........................................................3l6
Control and Safety Systems ..................................................................3l7
Ancillary Equipment ...............................................................................3l7
Compressed Air Piping ..........................................................................3l8
Compressed A Distribution System Piping ..........................................3l9
Lubricating Oil Requirements for M Compressors ........................>......320
Explosion in Air Compression Plant ................#......................................32l
References ............................................................................................323
CHAPTER 8 — Ignition ......................................................................325
Introduction ............................................................................................325
Spontaneous ignition .............................................................................326
Artificial ignition .....................................................................................329
Gas Fired Burners .................................................................................331
Description and Operation of a Popular Gas Fired Ignition System ......334
FIGURE 8.1 — In-Situ Combustion Ignition System .............................335
Electrical ignition ....................................................................................338
FIGURE 8.2 — Schematic of an Electrical Ignition System for
Fireflood Injection Well .......................................................................338
Hot-Fluid Injection and Chemical Ignition ..............................................340
Detecting Ignition ...................................................................................341
References ............................................................................................342
CHAPTER 9 — h-situ Combustion Well design, Completion,
and production Practices ...................................................................343
Introduction ............................................................................................343
Well Completion Practices .....................................................................343
FIGURE 9.1 — Schematic of a Typical Fireflood Injection Well ............344
FIGURE 9.2 — Schematic of a Typical Fireflood Producer ...................345
Drilling and Well Preparation .................................................................347
Drilling Fluids .........................................................................................347
Cementing .............................................................................................347
Perforating .............................................................................................348
Well Completion and Workover Fluids ...................................................348
Open Hole Completion ..........................................................................349
Screens ..................................................................................................349
X Open Hole Gravel Packing ....................................................................35l
FIGURE 9.3 — Schematic of Open Hole Gravel Packing for
Sand Control in Producer ...................................................................35l
Consolidated Pack .................................................................................352
FIGURE 9.4 — Sand Control (Slotted Liners and Wire
Wrapped Screens) ....................................................... .....................352
Cased Hole Completion ....................................................... .................353
Solder Glass Sand Consolidate Treatment ...........................................353
Clay Stabilization ...................................................................................356
Screening ...............................................................................................360
Suggested Drilling and Well Completion Procedures .............................361
Preservation of Hot Production Wells ....................................................364
FIGURE 9.5 — Estimated Cooling Water Requirements for Fireflood
Production Wells to Maintain Bottom Hole Temperature at 250 F .....365
FIGURE 9.6 — Trend for Hydrocarbon Emissions from a Fireflood ......366
FIGURE 9.7 — Trend for H+3 Emissions from a Fireflood ....................366
Operational Problems ............................................................................367
Project Monitoring ..................................................................................367
Waste Gas and Other Fluid Disposal ....................................................368
introduction ............................................................................................368
Waste Liquid and Their Disposal ...........................................................368
Waste Gases .........................................................................................369
General ..................................................................................................369
TABLE 9.3 — Pollutants Produced by a Fireflood Project ....................369
Flue Gas ................................................................................................370
Pollution Control Equipment ..................................................................370
General ..................................................................................................370
TABLE 9.4 — Application of Pollution Control Systems to a
Fireflood Project .................................................................................37l
Flare Stack .............................................................................................372
Combustion of Low Heat Value Waste Gases ......................................372
Thermal incinerators ..............................................................................372
Catalytic Incinerators .............................................................................373
Scrubbers ..............................................................................................374
References ............................................................................................375
Xi CHAPTER 10 — Oxygen / Enriched Air Fireflood ............................377
Introduction ............................................................................................377
Potential Advantages and Disadvantages of Oxygen/Enriched Ak
Fireflooding .........................................................................................378
Economics of Oxygen Fireflood .............................................................380
Supply Option ........................................................................................380
FIGURE 10.1 — Schematic of a Liquid Oxygen Vaporization
Systems for Oxygen Fireflood ............................................................38l
FIGURE 10.2 — Schematic Absorption (Pressure Swing)
Air Separation System ......................................................................381
FIGURE 10.3 — Schematic of Cryogenic Air Separation Plant .............382
TABLE 10.1 — Oxygen Supply Option ..................................................382
Economics .............................................................................................383
FIGURE 10.4 — Differential Cost for Oxygen Compared to Air ............383
FIGURE 10.5 — Breakeven Analysis on Delivery of 4MMscf/D
Oxygen ...............................................................................................385
Laboratory Studies .................................................................................385
Safety Consideration .............................................................................387
General ..................................................................................................387
FIGURE 10.6 — Propagation in Carbon Steel Pipe as Function of
Oxygen Concentration and Pressure ................................................388
FIGURE 10.7 — Maximum Permissible Oxygen Velocity in
Carbon Steel Pipes .............................................................................389
Injection Well .........................................................................................389
Producing Well .......................................................................................390
Oxygen Distribution Lines .................................................................39l
Field Projects .........................................................................................392
Forest Hill Oxygen Fireflood ..................................................................392
Project History .......................................................................................392
Project Description .................................................................................393
TABLE 10.2 — Forest Hill Oxygen Fireflood Reservoir and Fluid
Properties ..........................................................................................394
Injection Subsystems .............................................................................395
Injection Gas Supply System .................................................................395
Flow Control Stid ...................................................................................395
Injection Pipelines ..................................................................................396
Injection Wells and Wellhead Area ........................................................397
Production Subsystem ...........................................................................398
Production Wells ....................................................................................398
Xii Diluent Oil Distribution ...........................................................................399
Produced Oil Handling ...........................................................................399
Produced Gas Handling System ...........................................................400
Wastewater Disposal .............................................................................40l
References ............................................................................................402