Parte 53. PDVSA. Combustión en sitio para Petróleos Pesados y Extrapesados

A la COMISIÓN PRESIDENCIAL PARA LA DEFENSA, REESTRUCTURACIÓN Y REORGANIZACIÓN DE LA INDUSTRIA PETROLERA"ALÍ RODRÍGUEZ ARAQUE" (LA COMISIÓN): Estimados Compatriotas, en estos días un Ingeniero de PDVSA que goza de mi Alta Estima tanto por sus cualidades personales como por sus cualidades profesionales, solo voy a decir sus iniciales, VG, cuando le pregunté su opinión sobre el THAI-CAPRI, "disparó desde la cintura" y me dio esta RESPUESTA: "Ahorita PDVSA está enfocada a poner en producción a los pozos Tipo 2 (pozos con problemas pequeños y que se acondicionan sin necesidad de traer un taladro)". Luego de cierto intercambio virtual, civilizado cuando uno trata con una persona como este Ingeniero, llegamos a la conclusión que una empresa de la dimensión de PDVSA tiene que tener una ESTRATEGIA que comprenda planes a Corto, Mediano y Largo plazo. Sin duda lo que me dijo VG se corresponde con lo del Corto Plazo y el THAI-CAPRI, según mi opinión, para Mediano Plazo y la Conversión de la mayor parte de la producción del petróleo de La Faja para convertirla en KILOVATIOS, para Largo Plazo. ¿O no?

Como supongo que ya Ustedes pusieron a algunos ingenieros a ver las potencialidades del THAI-CAPRI y conociendo la reacción de los jefes de PDVSA por haber vivido en ese mundo por más de 30 años inmediatamente se cierran a nuevas ideas. Salen preguntas y dudas como estas: 1) THAI-CAPRI no es comercial, 2) Muéstrame 30 proyectos y los sitios donde se ha usado, exagero; 3) No podemos seguir dependiendo de tecnología externa y THAI-CAPRI, lo es; 4) Tiene que ser aprobado, primero, por el INTEVEP; 5) Para que todo no sea negativo, sale un Jefe y dice "Ya, Yo leí una cuantas tesis de grado y muchos "papers" técnicos presentados en Congresos Petroleros Mundiales y creo que debemos dar al THAI-CAPRI y, por lo tanto, recomiendo que llamemos, en primera instancias, a todos los socios extranjeros de las Empresas Mixtas de La Faja y les EXIGIMOS que en un lapso de 6 meses nos presenten un Anteproyecto de esta tecnología". Me viene a mi mente el proyecto del descubrimiento de petróleo más grande de los últimos 40 años que se hizo en el Oriente de Venezuela; me refiero al Campo El Furrial. El Gerente de Producción de la vieja LAGOVEN, HM, después de 3 desviaciones del pozo por problemas mecánicos, PUMMM, el Gran Descubrimiento. Más de un gerente con la segunda desviación de un pozo hubieran "arrugado", pero no, el Geólogo HM, con el arrojo que lo caracterizó fue una, dos y tres veces a la Junta Directiva a pedir más dinero para seguir con el proyecto y al final su decisión compensó, con creces, la inversión que se hizo con el Pozo Furrial-1X.

Tengo la esperanza que en la PDVSA actual hayan muchos HM y tengo fe de que alguno de ellos le darán la oportunidad al THAI_CAPRI. Como saben, ya, los beneficios de esta tecnología ya las mencioné en mi escrito Parte 52

Con este escrito me estoy adelantando a dar respuesta a las preguntas que ya mencioné y para eso les he proporcionado tesis de grado, "papers". experimentos de laboratorio y proyectos de campo tanto de Combustión En Sitio, como de THAI-CAPRI.

Por fortuna, no tuve que romperme la cabeza buscando por aquí y por allá para demostrarle lo que es la Combustión En Sitio. El documento que sigue, IN-SITU COMBUSTION HANDBOOK - PRINCIPLES AND PRACTICES, en español MANUAL DE COMBUSTIÓN EN SITIO – PRINCIPIOS Y PRÁCTICAS, creo Yo, y para quien quiera creerlo, el mas importante que se ha escrito sobre Combustión En Sitio, en los últimos 22 años, por estas tres razones:

  1. Nos presenta la historia de la Combustión En Sitio. Como empezó, los problemas que presentó, las pruebas de laboratorio, todos, o casi todos, los proyectos que se han desarrollado, éxitos y fracasos, aspectos técnicos considerados, etc, etc. y futuro de la tecnología. Con esto se le responderá a todos los que tienen duda sobre lo que es Combustión En Sitio y sus aspectos relacionados. Si después de leerlo, todavía, siguen creyendo que la Combustión En Sitio y su EVOLUCIÓN, hasta llegar al THAI-CAPRI, no tiene vida; sin duda podemos incluirlos entre los TRUMPISTAS, incluido el propio TRUMP, aún con todas las pruebas presentadas, que todavía creen que las elecciones de Estados Unidos que eligieron a Biden el año pasado, les fue robada. Así son las cosas.

  2. Aún cuando fue elaborado por profesional privado, fue a través de una contratación de una entidad oficial del gobierno de los Estados Unidos como lo es el Departamento de Energía, uno, inocentemente, pudiera preguntar ¿Por qué el Gobierno gastó una cantidad de dólares para que le pusieran en blanco y negro la tecnología de Combustión En Sitio si esta careciera de importancia? Por favor, lean el manual para que se formen su propia idea. Aquel que quiera el Manual, con gusto se lo envío. También, lo pueden conseguir Internet, buscando en Google por su título.

  3. PDVSA Petróleo, S.A. y las Empresas Mixtas, que operan en La Faja, no tienen porqué gastar tiempo en buscar lo que es Combustión En Sitio. Aún así, ni estados Unidos, ni Rusia, ni China, ni la India, pensando bien, no son ignorantes. Estoy seguro, 100 por ciento, que todos los centros de investigación petrolera de esos países saben no solo lo que es Combustión En Sitio, sino, también, lo que es THAI-CAPRI y, también, saben que en los alrededores del Polo Norte hay Petróleo y lo explotan; que en el fondo del océano hay cantidades de HIDRATOS DE GAS y ya lo producen; que ya explotan no solo Shale Oil, sino, también, OIL SHALE, si OIL SHALE. Así mismo, otras tecnologías, que se aplican para producir petróleo pesado y extrapesado. Entonces, no vamos, Nosotros, a poner en duda que la Combustión En Sitio es viable. Ojalá que no se pongan en la misma onda, de aquellos que creen que el transporte automotor ELÉCTRICO no tiene vida y que la Industria Petrolera, como la de hoy, durará unos 400 años más. Esas son las diferencias entre países que piensan con el FRENTEVISOR y no con el RETROVISOR. Espero que ninguno se ofenda.

IN-SITU COMBUSTION HANDBOOK - PRINCIPLES AND PRACTICES

Final Report

November 1998

By Partha S. Sarathi

January 1999

Performed Under Contract No. DE-AC22-94PC91 008

(Original Report Number NIPER/BDM-0374)

BDM Petroleum Technologies

BDM-Oklahoma, Inc.

Bartlesville, Oklahoma

National Petroleum Technology Office

U.S. DEPARTMENT OF ENERGY

Tulsa, Oklahoma

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 1" disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by,the United States Govern ment or any agency thereof. The views and opinions of authors expressed herein do not necessariIy state or reflect those of the United StatesGovernment.

Como se que muchos de los lectores, de este escrito, hasta aquí, tienen muchas preguntas, a continuación, les pongo a disposición la Tabla de Contenido del Manual de Combustión en Sitio y es, casi seguro, que muchas de sus incógnitas estarán contestadas.

Table of Contents

In-Situ Combustion Handbook — Principles and Practices ................xv

Abstract .....................................................................................................xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER 1 ...............................................................................................1

Introduction .Background .......................................................................l

Purpose and Scope of the Handbook ...................................................... 1

Organization of the Handbook ...................................................................2

Early History and Development of the In-Situ Combustion Process .........2

Current Status of In-Situ Combustion ........................................................6

Global ISC Activities ..................................................................................6

TABLE 1.1 — Statistics of World’s Active In-Situ Combustion Projects ....7

U.S. ISC Activities ......................................................................................9

TABLE 1.2 — U.S. In-Situ Combustion Activities .................................... 10

TABLE 1.3 — Geographical Distribution of U.S. Combustion Projects ...12

TABLE 1.4 — U.S. In-Situ Combustion Project Activities —

Breakdown by Majors and independents ............................................. 17

Assets and Liabilities of In-Situ Combustion Process ............................. 18

Assets of In-Situ Combustion Process .................................................... 18

TABLE 1.5 — Recovery Efficiency of In-Situ Combustion Compared

to Other EOR Methods ........................................................................2O

Limitations of Combustion Process .........................................................2O

References ..............................................................................................22

CHAPTER 2 — Fundamentals of Fireflooding .............*........*..........*..25

introduction ..............................................................................................25

In-Situ Combustion Processes ................................................................25

Dry Combustion .......................................................................................25

FIGURE 2.2 — Schematic of Temperature Profile for Dry

Combustion ..........................................................................................27

Wet Combustion ......................................................................................29

FIGURE 2.3 — Schematic of Temperature Profile for an Incomplete

(Partially Quenched) Wet Combustion Process ...................................30

iFIGURE 2.4 — Schematic of Temperature Profile for a Normal

Wet Combustion Process Without Convective Heat Front ..................30

FIGURE 2.5 — Schematic of Temperature Profile for Super Wet

Combustion Process ..........................................................................3l

FIGURE 2.6 — Schematic of Saturation Profile for the Incomplete

Wet Combustion Process .....................................................m..............3l

FIGURE 2.7 —Schematic of Saturation Profile for Normal Wet

Combustion Process ...........................................................................32

FIGURE 2.8 — Schematic of Saturation Profile for Super Wet

Combustion Process ............................................................................32

Reverse Combustion .............................................................................34

Other Processes Variation .......................................................................35

References .......s......................................................................................36

CHAPTER 3 — Kinetics And Combustion ~be Studies ....................37

Introduction ........... ..................................................................................37

Chemical Reactions Associated with In-Situ Combustion .......................37

Low Temperature Oxidation ....................................................................38

FIGURE 3.1 — Schematic of Dry Combustion Temperature

Profile Showing the General Effect of Temperature on Oxygen

Uptake Rate for Heavy Oils and the Negative Temperature

Gradient Region ...............................................................= ........39

The Pyrolysis Reactions .........................................................................4o

High Temperature Oxidation ....................................................................42

Reaction Kinetics .....................................................................................43

Factors Affecting Oxidation Reactions .....................................................46

Tools and Techniques .............................................................................47

Thermal Analysis Techniques ..................................................................48

TGAand DTATechniques .......................................................................48

FIGURE 3.2 — Typical DTG Thermograms Showing Effect of

Sudace Area on Crude Oil Combustion ...............................................49

FIGURE 3.3 — Typical DTG Thermogram for a California Heavy

Oil-Sand Mixture (After Mamora et al., 1993) .......................................49

FIGURE 3.4 — Typical DTG Thermogram for a Venezuelan

Extra Heavy Oil-Sand Mixture ..............................................................50

Determination of Kinetic Parameters from Thermogram .,.......................51

FIGURE 3.5 — Typical DTG Thermogram Showing Various

Oxidation Regime .................................................................................55

FIGURE 3.6 — Schematic Diagram of a Differential Thermal

Analyzer (DTA) Cell .............................................................................56

ii

IFIGURE 3.7 — Schematic Diagram of a High Pressure

Thermal Analysis Experimental Set-up ................................................56

Shortcomings of Using TGA / DSC Techniques to Evaluate

ISC Parameters ....................................................................................57

TABLE 3.1 — Resource Requirements of Combustion Tube

and TGA / DSC Experiments ...............................................................58

Accelerating Rate Calorimeter (ARC) ......................................................59

FIGURE 3.8 — High Pressure Accelerating Rate Calorimeter

(ARC) Set-Up ......................................................................................59

FIGURE 3.9 — Schematic of Flowing Arc System Set-up ......................61

ARC Theo~ .............................................................................................6l

Limitations of ARC Tests .........................................................................63

Effluent Gas Analysis (EGA) Technique ..................................................64

FIGURE 3.10 — Schematic of Stanford University’s Kinetic Cell ...........65

FIGURE 3.11 — Schematic of University of Calgary’s Ramped

Temperature Oxidation Cel ..................................................................66

FIGURE 3.12 — Schematic of Stanford University’s In-Situ

Combustion Experimental Set. Up ........................................................67

FIGURE 3.13 — Example of a Ramped Temperature Oxidation

(RTO) Temperature Profile Showing LTO Response ...........................68.

FIGURE 3.14 — Example of a RTO Temperature Profile Showing

HTO Response ....................................................................................68

FIGURE 3.15 — Example of a RTO Temperature Profile Showing

HTO Response and Low Oil Recovery ...............................................69

Combustion Tube Tests ...........................................................................7O

introduction ..............................................................................................7O

FIGURE 3.16 — Schematic of a Typical Combustion Tube Details ........70

Comments About Combustion Tube Tests .............................................’.71

Combustion Tubes ...................................................................................74

Description of Combustion Tube Test Set-up ..........................................74

TABLE 3.2 — Dimensions of Combustion Tube Employed in

Selected In-Situ Combustion Laboratories ...........................................75

Operating Procedures ..............................................................................76

Interpretation of Combustion Tube Data .................................................79

FIGURE 3.17 — Comparative Temperature Profiles ...............................79

FIGURE 3.18 — Probe Temperature Profile as a Function of

Time for a Dry In-Situ Combustion Tube Run ......................................80

FIGURE 3.19 — Dry Combustion: Schematic Temperature

Profile Downstream from the Temperature Peak .................................8l

...

111FIGURE 3.20 — Temperature Profile for Dry Combustion,

Reflecting the Effect of Native Core Material ........................................82

FIGURE 3.21 — Wet Combustion: Schematic Temperature

Profile Downstream from the Temperature Peak .................................82

Analysis of Combustion Tube Data .........................................................83

High Temperature Combustion Stoichiometry .........................................83

Examples of Combustion Parameter Calculation

from Typical Product Gas Composition ...................................’ ............91

Modifications of Equation to Account for Reactions Other

Than Assumed High Temperature Combustion .................................100

Example Calculation to Illustrate Combustion of an Oxidized Fuel .......103

Feed Gas Composition (mole ?40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Elemental Analysis of Fuel ....................................................................l O6

Moles Product Gas on a Dry Basis ........................................................l07

Composition of Product Gas on Dry Basis ............................................107

Conventional Combustion Parameters .................................................. 108

Feed Gas Composition (mole Y~)...........................................................

Product Gas Compositions (mole Yo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculated Gas-Phase Parameters .......................................................

Feed Gas Composition (mole YO) . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Product Gas Compositions (mole 0/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculated Gas-Phase Parameters .......................................................

Analysis of Air and Fuel Requirements for Combustion Tube Tests .....

References ............................................................................................

CHAPTER 4 — Evaluation of an In-Situ Combustion Prospect ......133

introduction ............................................................................................l33

Geologic Characterization ..................................................................... 133

Lateral and Vertical Extent of Reservoirs. .............................................134

Vertical Depth ........................................................................................l35

Resewoir Thickness ..............................................................................l36

Structural Attitude and Dip ..................................................................... 136

Overburden Competence .....................................................................l37

Reservoir Heterogeneities .................................................................l37

Rock Properties .....................................................................................138

Sand Uniformity and Texture ......... .......................................................

Permeability ...........................................................................................

Porosity .............................................................................................

Oil Saturation ........................................................................................

Iv Composition of Reservoir Matrix ............................................................ 140

Effect of Well Spacing ............................................................................ 141

Prospect Screening ............................................................................... 142

References ............................................................................................ 144

CHAPTER 5 — Engineering of an In-Situ Combustion Project ......147

In-Situ Combustion Performance Parameters ....................................... 147

Fuel Deposit ...........................................................................................l47

FIGURE 5.1 — Schematic of a Laboratory Combustion Tube,

Depicting Various Combustion Process Mechanisms ........................ 148

FIGURE 5.2 — Relationship Between Crude Gravity and

Fuel Deposit ....................................................................................... 149

FIGURE 5.3 — Minimum Fuel Content Required to Support

a Fixed Frontal Temperature ..............................................................l5O

Air Requirements ................................................................................... 150

FIGURE 5.4 — Relationship Between Oil Gravity and Air

Requirement ....................................................................................., 151

FIGURE 5.5 — A Requirement for Combustion ..................................152

FIGURE 5.6 — The Theoretical Air Required to Move a Barrel

of Oil in the Reservoir is Shown as a Function of Fuel Content

and Porosity ....................................................................................... 152

Air Flux ................................................................................................... 153

FIGURE 5.7 — Relationship Between Crude Gravity and Required

Minimum Air Flux ................................................................................ 153

FIGURE 5.8 — Point Velocity of Combustion Front Movement as

Described by Accompanying Equation ............................................... 154

Air-Oil Ratio ...........................................................................................l54

FIGURE 5.9 — Theoretical Ak-Oil Ration vs Fuel Deposit ...................155

FIGURE 5.10 — Air-Oil Ratio as a Function of Oil in Place and

Fuel Consumption .............................................................................. 156

Injection Pressure ..................................................................................l57

Oil Recovery Rate ..................................................................................l57

In-Situ Combustion Project Design ........................................................ 158

Nelson-McNeil Method .......................................................................... 158

TABLE 5.3 — Relation between Dimensional Flow Term i~ and

Areal Sweep Efficiency ....................................................................... 162

FIGURE 5.11 — Air Requirements for Inverted Developed 5-Acre,

5-Spot Well Pattern with 30 ft. Formation Thickness ......................... 163

TABLE 5.4 — Field Data ....................................................................... 169

In-Situ Combustion: Oil — Volume Burned Method .............................. 176

V FIGURE 5.12 — Estimated Oil Recovery vs Volume Burned ................176

Methodology ..........................................................................................l78

TABLE 5.5 — Equations to Calculate In-Situ Combustion

Performance ........................... ..........................................................179

Satman — Brigham Correlations ...........................................................l82

Correlation Technique ...........................................................................182

FIGURE 5.13 — Incremental Oil Production vs Cumulative Air

Injection for Fieldwide Combustion Tests ........................................... 183

FIGURE 5.14 — Dimensionless Cumulative Incremental Oil

Production vs Air Injection for Fieldwide Combustion Tests) .............184

FIGURE 5.15 — Effects of Fuel Burned, Rock Volume, and

Oxygen Utilization on Cumulative Incremental Oil vs Ak

Injection for Fieldwide Combustion Tests ........................................... 186

FIGURE 5.16 — Multiple Linear Regression Analysis and Data

on Figure 5.16 ...................................................................................l88

FIGURE 5.17 — First Correlation Curve for Dry In-Situ Combustion

Field Cases .........................................................................................l89

FIGURE 5.18 — Data for the Second Correlation Curve ......................191

FIGURE 5.19 — Second Correlation Curve for Dry In-Situ

Combustion Field Cases ...................................................................192

Application of Correlation ....................................................................... 192

FIGURE 5.20 — Cumulative Incremental Oil Production vs

Cumulative Air Injection for Pilot Dry Combustion "Tests ....................193

FIGURE 5.21 — Effects of Fuel, Rock Volume, and Oxygen

Utilization for Pilot Dry Combustion Tests ..........................................l94

FIGURE 5.22 — Dry Combustion Field Performance Prediction

Using Second Correlation ...................................................................195

References ............................................................................................l97

CHAPTER 6 — In-Situ Combustion Case Histories and

Performance Analysis .........................................................................199

Miga Fireflood ........................................................................................l99

Reservoir Description ............................................................................200

TABLE 6.1 — Miga Thermal Recovery Project (Eastern

Venezuela Pz_qSand) ......@..............................................................#...20l

Project Production Response ................................................................202

Conclusions ...........................................................................................203

Cotton Valley Air Injection Project .........................................................203

TABLE 6.2 — June 1981 Status of the Cotton Valley Air

Injection Project ..o......................m...m....................................................205

West Newport Fireflood .........................................................................205

viProducing Wells .....................................................................................206

Injection Wells ........................................................................................207

Production Facilities ...............................................................................207

Comments .............................................................................................208

TABLE 6.3 — Mobil (General Crude) West New Port Fireflood ............209

Paris Valley Combinations Thermal Drive .............................................212

FIGURE 6.1 — Paris Valley In-Situ Combustion Project Well

Pattern Map ........................................................................................213

TABLE 6.4 — Average Reservoir and Combustion Characteristics

of Ansberry Sand Paris Valley Field G..................................................2l4

Project Performance Analysis ................................................................2l6

Bodcau In-Situ Combustion Project .......................................................2l8

FIGURE 6.2- Location Map of Bodcau Fireflood ................................219

FIGURE 6.3 — Project Pattern Map of Bodcau Fireflood Project .........219

TABLE 6.5 — Reservoir And Fluid Characteristics of Nacatoch

Sand, Bodcau Lease, Bellevue Field, Bossier Parish, LAS.................220

Project Performance Analysis ................................................................222

General Observations ............................................................................224

References ............................................................................................227

CHAPTER 7 — Air Compression Plant ..............................................229

introduction ............................................................................................229

FIGURE 7.1 — A Compression Equipment for Fireflooding ................230

Compressor Types ................................................................................231

FIGURE 7.2 — Principle Compressor Types ........................................232

FIGURE 7.3 — Typical Application Ranges of Compressor Types .......232

FIGURE 7.4 — Comparison of Centrifugal and Reciprocating

Compressor Efficiencies .....................................................................233

FIGURE 7.5 — Compressor Power Requirements at Various

Compression Ratios ...........................................................................233

TABLE 7.1 — Compressor Types Employed in the U.S.

ISC Projects .......................................................................................235

Relative Comparison of Various Compressor Types .............................238

Advantages and Disadvantages of a Centrifugal Compressor ..............239

Advantages and Disadvantages of a Reciprocating Compressor .........240

Advantages and Disadvantages of Rotary Screw Compressors ...........241

Reasons for the Popularity of Reciprocators in ISC Operation .............242

Basic Terms and Definitions of Compressor Terminology ....................243

Basic Relationships ...............................................................................245

Vii Principles of Compression .....................................................................245

Compression Cycles ..............................................................................248

Theoretical Horsepower .........................................................................250

Adiabatic Compression ..........................................................................251

Polytropic Compression .........................................................................253

Isothermal Compression ........................................................................255

Reciprocating Compressor ....................................................................256

introduction ............................................................................................256

Description .............................................................................................257

FIGURE 7.7 — Basic Construction of Reciprocating Compressor ........257

FIGURE 7.8 — Diagram Illustrating Ideal Reciprocating

Compressor Cycle ........................................................................259

FIGURE 7.8A— Intake .........................................................................260

FlGURE7.8B .Compression ..............................................................26l

FIGURE 7.8C — Discharge ...................................................................262

FIGURE 7.8D — Expansion ..................................................................263

FIGURE 7.8 E—Suction .......................................................................264

Reciprocating Compressor Performance ...............................................264

FIGURE 7.9 — P-V Diagram Showing Clearance Volume ....................265

FIGURE 7.10 — Typical Compression Ratio vs Volumetric

Efficiency Curves for a Reciprocating Compressor ............................267

Discharge Temperature .........................................................................268

FIGURE 7.11 — Chart to Estimate Theoretical Discharge

Temperature from a Cylinder .............................................................269

Multi Staging .................i........................................................................270

Compressor Horsepower Estimation .....................................................271

FIGURE 7.12 — Horsepower Curves for Reciprocating Compressor

for Different ‘K ...................................................................................272

FIGURE 7.13 — Horsepower Curves for Reciprocating Compressor ...273

FIGURE 7.14 — Horsepower Curves for Reciprocating Compressor ...274

FIGURE 7.15 — Correction Factor Curves for Low Intake Pressure ....275

FIGURE 7.16 — Reciprocating Compressor — Shaft Horsepower

Estimation Curves ..............................................................................275

Reciprocating Air Compressor for ISC services ....................................277

Packaged Compressors ........................................................................278

Process Compressors ....................................................................... ...278

Reciprocating Compression Selection ...................................................279

TABLE 7.2 — Reciprocating Compressor Inquiry Sheet .......................28l

Centrifugal Compressors.......................................................................z8s

...

Vlll. — —

Definitions ..............................................................................................283

Centrifugal Compressor Characteristics ................................................285

FIGURE 7.17— Cutaway of a Centrifugal Compressor ........................286

Operating Characteristics ......................................................................287

Demand Load ........................................................................................287

FIGURE 7.18 — Typical Curves, Illustrating Three Types of

Centrifugal Compressor Loading (Rollins, 1989) ...............................288

Application to Load ................................................................................288

FIGURE 7.19 — Performance Characteristics of Centrifugal vs

Reciprocating Compressor (Rollins, 1989) .........................................289

FIGURE 7.20 — Characteristic Curves of a Centrifugal Compressor

and a Reciprocating Compressor, Superposed Upon DemandLoad Curves ........................................................................................290

Controlling Pressure or Capacity...........................................................290

FIGURE 7.21 — Characteristic Curves of a Centrifugal Compressor

at Variable Speed, Superposed Upon Demand-Load ........................291

Selection of Unit .....................................................................................292

Approximate Selections Limitations .......................................................293

TABLE 7.3 — Centrifugal Compressor Inquiry Sheet ...........................295

TABLE 7.3 (cont.) — Centrifugal Compressor Inquiry Sheet ................296

Sizing Consideration .............................................................................."297

FIGURE 7.22 — Density of Moist Ah’ as Function of Temperature .........300

Humidity .................................................................................................301

FIGURE 7.23 — Specific Volume of Saturated Air-Water Vapor

Moistures at Saturation Temperature and Dry Air at 70°F

(21.1°c) ..........................................................................................30l

Specify Ambient Conditions ...................................................................302

Centrifugal Air Compressor Characteristic ..........................................., 302

FIGURE 7.24 — Centrifugal Compressor Characteristic Curve ............303

Weight or Volume Flow .........m................................................................304

Effect of Inlet Air Temperature ...............................................................305

FIGURE 7.25 — Effect of Inlet Air Temperature on Flow and Power

in a Centrifugal Compressor ..............................................................308

Effect of Inlet Air Pressure .....................................................................308

FIGURE 7.26 — Inlet Pressure Effects on Centrifugal Compressor

Performance ......................................................................................3O8

Effect of Cooling Water Temperature ....................................................309

FIGURE 7.27 — Effect of Cooling Water Temperature on the

Centrifugal Compression Performance ..............................................309

Designing the Compressed Ah- System .................................................310

Ix Establishing Injection Rate and Pressure ..............................................312

Selection of Compressor and Prime Movers .........................................312

Package or Process Compressors ........................................................3l5

Locating the Compressor Station ..........................................................3l6

Control and Safety Systems ..................................................................3l7

Ancillary Equipment ...............................................................................3l7

Compressed Air Piping ..........................................................................3l8

Compressed A Distribution System Piping ..........................................3l9

Lubricating Oil Requirements for M Compressors ........................>......320

Explosion in Air Compression Plant ................#......................................32l

References ............................................................................................323

CHAPTER 8 — Ignition ......................................................................325

Introduction ............................................................................................325

Spontaneous ignition .............................................................................326

Artificial ignition .....................................................................................329

Gas Fired Burners .................................................................................331

Description and Operation of a Popular Gas Fired Ignition System ......334

FIGURE 8.1 — In-Situ Combustion Ignition System .............................335

Electrical ignition ....................................................................................338

FIGURE 8.2 — Schematic of an Electrical Ignition System for

Fireflood Injection Well .......................................................................338

Hot-Fluid Injection and Chemical Ignition ..............................................340

Detecting Ignition ...................................................................................341

References ............................................................................................342

CHAPTER 9 — h-situ Combustion Well design, Completion,

and production Practices ...................................................................343

Introduction ............................................................................................343

Well Completion Practices .....................................................................343

FIGURE 9.1 — Schematic of a Typical Fireflood Injection Well ............344

FIGURE 9.2 — Schematic of a Typical Fireflood Producer ...................345

Drilling and Well Preparation .................................................................347

Drilling Fluids .........................................................................................347

Cementing .............................................................................................347

Perforating .............................................................................................348

Well Completion and Workover Fluids ...................................................348

Open Hole Completion ..........................................................................349

Screens ..................................................................................................349

X Open Hole Gravel Packing ....................................................................35l

FIGURE 9.3 — Schematic of Open Hole Gravel Packing for

Sand Control in Producer ...................................................................35l

Consolidated Pack .................................................................................352

FIGURE 9.4 — Sand Control (Slotted Liners and Wire

Wrapped Screens) ....................................................... .....................352

Cased Hole Completion ....................................................... .................353

Solder Glass Sand Consolidate Treatment ...........................................353

Clay Stabilization ...................................................................................356

Screening ...............................................................................................360

Suggested Drilling and Well Completion Procedures .............................361

Preservation of Hot Production Wells ....................................................364

FIGURE 9.5 — Estimated Cooling Water Requirements for Fireflood

Production Wells to Maintain Bottom Hole Temperature at 250 F .....365

FIGURE 9.6 — Trend for Hydrocarbon Emissions from a Fireflood ......366

FIGURE 9.7 — Trend for H+3 Emissions from a Fireflood ....................366

Operational Problems ............................................................................367

Project Monitoring ..................................................................................367

Waste Gas and Other Fluid Disposal ....................................................368

introduction ............................................................................................368

Waste Liquid and Their Disposal ...........................................................368

Waste Gases .........................................................................................369

General ..................................................................................................369

TABLE 9.3 — Pollutants Produced by a Fireflood Project ....................369

Flue Gas ................................................................................................370

Pollution Control Equipment ..................................................................370

General ..................................................................................................370

TABLE 9.4 — Application of Pollution Control Systems to a

Fireflood Project .................................................................................37l

Flare Stack .............................................................................................372

Combustion of Low Heat Value Waste Gases ......................................372

Thermal incinerators ..............................................................................372

Catalytic Incinerators .............................................................................373

Scrubbers ..............................................................................................374

References ............................................................................................375

Xi CHAPTER 10 — Oxygen / Enriched Air Fireflood ............................377

Introduction ............................................................................................377

Potential Advantages and Disadvantages of Oxygen/Enriched Ak

Fireflooding .........................................................................................378

Economics of Oxygen Fireflood .............................................................380

Supply Option ........................................................................................380

FIGURE 10.1 — Schematic of a Liquid Oxygen Vaporization

Systems for Oxygen Fireflood ............................................................38l

FIGURE 10.2 — Schematic Absorption (Pressure Swing)

Air Separation System ......................................................................381

FIGURE 10.3 — Schematic of Cryogenic Air Separation Plant .............382

TABLE 10.1 — Oxygen Supply Option ..................................................382

Economics .............................................................................................383

FIGURE 10.4 — Differential Cost for Oxygen Compared to Air ............383

FIGURE 10.5 — Breakeven Analysis on Delivery of 4MMscf/D

Oxygen ...............................................................................................385

Laboratory Studies .................................................................................385

Safety Consideration .............................................................................387

General ..................................................................................................387

FIGURE 10.6 — Propagation in Carbon Steel Pipe as Function of

Oxygen Concentration and Pressure ................................................388

FIGURE 10.7 — Maximum Permissible Oxygen Velocity in

Carbon Steel Pipes .............................................................................389

Injection Well .........................................................................................389

Producing Well .......................................................................................390

Oxygen Distribution Lines .................................................................39l

Field Projects .........................................................................................392

Forest Hill Oxygen Fireflood ..................................................................392

Project History .......................................................................................392

Project Description .................................................................................393

TABLE 10.2 — Forest Hill Oxygen Fireflood Reservoir and Fluid

Properties ..........................................................................................394

Injection Subsystems .............................................................................395

Injection Gas Supply System .................................................................395

Flow Control Stid ...................................................................................395

Injection Pipelines ..................................................................................396

Injection Wells and Wellhead Area ........................................................397

Production Subsystem ...........................................................................398

Production Wells ....................................................................................398

Xii Diluent Oil Distribution ...........................................................................399

Produced Oil Handling ...........................................................................399

Produced Gas Handling System ...........................................................400

Wastewater Disposal .............................................................................40l

References ............................................................................................402

 



Esta nota ha sido leída aproximadamente 1622 veces.



Edmundo Salazar

Experto en petróleo y gas

 edmundosalazar@gmail.com

Visite el perfil de Edmundo Salazar para ver el listado de todos sus artículos en Aporrea.


Noticias Recientes: