Parte 87. PDVSA, soporte documental para combustión en sitio. THAI Y THAI-CAPR, etc

M.R. Ado, M. Greaves and S.P. Rigby Petroleum Research xxx (xxxx) xxx

Estimad@ Compañer@, tengo fe de que Usted, al igual que otros que están en mi lista de distribución, está interesado en conocer más sobre las tecnologías mencionadas en el título de este artículo. Por esa razón, les proveo, anexo, algunos títulos de documentos disponibles en Internet en los que se señalan, no solo lo exitoso de esas tecnologías en los ensayos de laboratorio, sino los beneficios, también, en el campo.

Una cosa que no nos atrevemos a negar nuestro convencimiento de que la INVESTIGACIÓN no se parará en la búsqueda de nuevos métodos que permitan producir, y con menos daño al ambiente, en cantidades comerciales los petróleos pesados y extrapesados del mundo, de los cuales Venezuela posee las mayores reservas. En ese sentido, puedo mencionar tecnologías como la Inyección de Agua, Inyección de Surfactantes, Inyección de Vapor, Inyección de Polímeros, Combustión en Sitio, SAGD (Steam Assisted Gravity Drainage), VAPEX (Vapor Extraction) , CHOPS (Cold Heavy Oil Production wth Sands), Desafaltación, Calentamiento con Resistencias Eléctricas, THAI(Toe to Heel Air Injection),THAI-CAPRI(Toe to Heel Air Injection - CAtalytic upgrading PRocess In-situ), Inyección de Nanopartículas y las que vendrán.

Sería mezquino, de mi parte, no reconocer que en el pasado distante, y en uno no muy distante, en Venezuela hubo proyectos exitosos para la recuperación adicional de petróleo pesado, específicamente, con la inyección de vapor y ensayos modestos, sin aplicación a una gran escala, de la inyección de surfactantes o uso de resistencias eléctricas. Pero, por muchas razones estos han dejado de aplicarse, que no viene al caso discutir aquí.

Debemos reconocer que el problema de nuestras Grandes Reservas de petróleo extrapesado de La Faja no es solo producirlas, sino, mas bien, mejorarlas en el yacimiento de modo que obtengamos un producto comercializable "directamente desde el pozo". En ese sentido, hemos estado dejando pasar muchos trenes y no hemos aplicado ninguna tecnología que lo permita. Por eso, en algunos de mis artículos anteriores, y en el presente, he recomendado el inicio de implementación de tecnologías como THAI y THAI-CAPRI, estando, al mismo tiempo, convencido que "por ahí van unos tiros".

Como la tecnología sigue avanzando, también, trataré un avance tecnológico adicional con el que se ha estado ensayando como es la NANOTECNOLOGÍA. En este sentido, junto con la combustión en sitio se inyectan catalizadores en nanopartículas que, también, permiten el Mejoramiento en el Yacimiento del Petróleo Extrapesado de La Faja. Sobre este aspecto escribiré en mi próximo artículo.

A continuación parte de documentación que les puede servir para ir conociendo, aún más, sobre el Mejoramiento en el Yacimiento de Petróleo Extrapesado como el que tenemos en La Faja y estar preparado para cuando Superbigote llame a alguno de Ustedes para hablar sobre el Tema:

    1. Algunas Referencias Bibliográficas sobre Combustión en sitio, THAI y THAI-CAPRI, etc.

Ado. Muhammad Rabiu a, b, *, Malcolm Greaves c, Sean P. Rigby b

Effect of operating pressure on the performance of THAI-CAPRI in situ combustion and in situ catalytic process for simultaneous thermal and catalytic upgrading of heavy oils and bitumen. https://www.sciencedirect.com/science/article/pii/S2096249521000752.

a. Department of Chemical Engineering, College of Engineering, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia b Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK c Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Abu, I.I., Moore, R.G., Mehta, S.A., Ursenbach, M.G., Mallory, D.G., Pereira Almao, P., Carbognani Ortega, L., 2015. Upgrading of Athabasca bitumen using supported catalyst in conjunction with in-situ combustion. J. Can. Pet. Technol. 54, 220e232. https://doi.org/10.2118/176029-PA.

Ado, M.R., 2021a. Improving oil recovery rates in Thai in situ combustion process using pure oxygen. Upstream Oil Gas Technol, 100032. https://doi.org/10.1016/ j.upstre.2021.100032.

Ado, M.R., 2021b. Improving heavy oil production rates in Thai process using wells configured in a staggered line drive (SLD) instead of in a direct line drive (DLD) configuration: detailed simulation investigations. J. Pet. Explor. Prod. Technol. https://doi.org/10.1007/s13202-021-01269-0.

Ado, M.R., 2021c. Understanding the mobilised oil drainage dynamics inside laboratory-scale and field-scale reservoirs for more accurate Thai process design and operation procedures. J. Pet. Explor. Prod. Technol. https://doi.org/ 10.1007/s13202-021-01285-0.

Ado, M.R., 2020a. A detailed approach to up-scaling of the Toe-to-Heel Air Injection (Thai) In-Situ Combustion enhanced heavy oil recovery process. J. Petrol. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106740.

Ado, M.R., 2020b. Impacts of kinetics scheme used to simulate toe-to-heel air injection (Thai) in situ combustion method for heavy oil upgrading and production. ACS Omega 5. https://doi.org/10.1021/acsomega.9b03661.

Ado, M.R., 2020c. Simulation study on the effect of reservoir bottom water on the performance of the Thai in-situ combustion technology for heavy oil/tar sand upgrading and recovery. SN Appl. Sci. 2. https://doi.org/10.1007/s42452-0191833-1.

Ado, M.R., 2020d. Effect of reservoir pay thickness on the performance of the Thai heavy oil and bitumen upgrading and production process. J. Pet. Explor. Prod. Technol. 10. https://doi.org/10.1007/s13202-020-00840-5.

Ado, M.R., 2020e. Predictive capability of field scale kinetics for simulating toe-to heel air injection heavy oil and bitumen upgrading and production technology. J. Petrol. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106843.

British Petroleum (BP), 2020. Statistical review of world energy [WWW Document]. URL. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/ pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report. pdf. accessed 11.16.20.

Cavallaro, A.N., Galliano, G.R., Moore, R.G., Mehta, S.A., Ursenbach, M.G., Zalewski, E., Pereira, P., 2008. In situ upgrading of Llancanelo heavy oil using in situ combustion and a downhole catalyst bed. J. Can. Pet. Technol. 47, 23e31.

Coats, K.H., 1983. Some observations on field-scale simulation of the in-situ combustion process. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.

Elahi, S.M., Scott, C.E., Chen, Z., Pereira-Almao, P., 2019. In-situ upgrading and enhanced recovery of heavy oil from carbonate reservoirs using nano-catalysts: upgrading reactions analysis. Fuel 252, 262e271. https://doi.org/10.1016/ j.fuel.2019.04.094.

Ferdous, D., Dalai, A.K., Adjaye, J., 2006. Hydrodenitrogenation and Hydrodesulfurization of heavy gas oil using NiMo/Al2O3 catalyst containing Boron: experimental and kinetic studies. Ind. Eng. Chem. Res. 45, 544e552. https:// doi.org/10.1021/ie050094r.

Gates, I.D., 2010. Solvent-aided Steam-Assisted Gravity Drainage in thin oil sand reservoirs. J. Petrol. Sci. Eng. 74, 138e146. https://doi.org/10.1016/

j.petrol.2010.09.003.

Gates, I.D., Larter, S.R., 2014. Energy efficiency and emissions intensity of SAGD. Fuel 115, 706e713. https://doi.org/10.1016/j.fuel.2013.07.073.

Greaves, M., Dong, L.L., Rigby, S.P., 2012. Simulation study of the toe-to-heel air injection three-dimensional combustion cell experiment and effects in the mobile oil zone. Energy & Fuels 26, 1656e1669.

Greaves, M., El-Sakr, A., Xia, T.X., Ayasse, C., Turta, A., 1999. Thai - new air injection technology for heavy oil recovery and in situ upgrading. Annu. Tech. Meet. https://doi.org/10.2118/99-15.

Greaves, M., Xia, T.X., Imbus, S., Nero, V., 2004. Thai-CAPRI process: Tracing downhole upgrading of heavy oil. In: Canadian International Petroleum Conference. Petroleum Society of Canada.

Greaves, M., Xia, T.X., Turta, A.T., 2008. Stability of Thai (TM) process - Theoretical and experimental observations. J. Can. Pet. Technol. 47, 65e73.

Guo, K., Li, H., Yu, Z., 2016. In-situ heavy and extra-heavy oil recovery: a review. Fuel 185, 886e902. https://doi.org/10.1016/j.fuel.2016.08.047.

Hajdo, L.E., Hallam, R.J., Vorndran, L.D.L., 1985. Hydrogen generation during in-situ combustion. SPE Calif. Reg. Meet. https://doi.org/10.2118/13661-MS.

Hein, F.J., 2017. Geology of bitumen and heavy oil: an overview. J. Petrol. Sci. Eng. 154, 551e563. https://doi.org/10.1016/j.petrol.2016.11.025.

International Energy Agency, 2020. World energy Outlook [WWW Document]. URL.https://www.iea.org/reports/world-energy-outlook-2020. accessed 10.29.20.

Kovscek, A., Castanier, L., Gerritsen, M., 2013. Improved Predictability of in-situcombustion enhanced oil recovery. SPE Reservoir Eval. Eng. 16, 172e182.

Li, Yibo, Wang, Z., Hu, Z., Xu, B., Li, Yalong, Pu, W., Zhao, J., 2020. A review of in situ upgrading technology for heavy crude oil. Petroleum. https://doi.org/10.1016/ j.petlm.2020.09.004.

Liang, J., Guan, W., Jiang, Y., Xi, C., Wang, B., Li, X., 2012. Propagation and control of fire front in the combustion assisted gravity drainage using horizontal wells. Petrol. Explor. Dev. 39, 764e772.

Liu, Z., Wang, H., Blackbourn, G., Ma, F., He, Z., Wen, Z., Wang, Z., Yang, Z., Luan, T.,

Wu, Z., 2019. Heavy oils and oil sands: global distribution and resource Assessment. Acta Geol. Sin. - English Ed. 93, 199e212. https://doi.org/10.1111/ 1755-6724.13778.

Moore, R.G., Laureshen, C.J., Mehta, S.A., Ursenbach, M.G., Belgrave, J.D.M., Weissman, J.G., Kessler, R.V., 1999. A downhole catalytic upgrading process for heavy oil using in situ combustion. J. Can. Pet. Technol. 38, 8. https://doi.org/ 10.2118/99-13-44.

Rabiu Ado, M., 2017. Numerical Simulation of Heavy Oil and Bitumen Recovery and Upgrading Techniques. University of Nottingham, UK.

Rabiu Ado, M., Greaves, M., Rigby, S.P., 2018. Effect of pre-ignition heating cycle method, air injection flux, and reservoir viscosity on the Thai heavy oil recovery process. J. Petrol. Sci. Eng. 166. https://doi.org/10.1016/j.petrol.2018.03.033.

Rabiu Ado, M., Greaves, M., Rigby, S.P., 2017. Dynamic simulation of the toe-to-heel air injection heavy oil recovery process. Energy and Fuels 31. https://doi.org/ 10.1021/acs.energyfuels.6b02559.

Shah, A., Fishwick, R., Leeke, G., Wood, J., Rigby, S., Greaves, M., 2011. Experimental optimization of catalytic process in situ for heavy-oil and bitumen upgrading. J. Can. Pet. Technol. 50, 33e47.

Sharma, J., Dean, J., Aljaberi, F., Altememee, N., 2021. In-situ combustion in Bellevue field in Louisiana e History, current state and future strategies. Fuel 284, 118992. https://doi.org/10.1016/j.fuel.2020.118992.

Shi, L., Xi, C., Liu, P., Li, X., Yuan, Z., 2017. Infill wells assisted in-situ combustion following SAGD process in extra-heavy oil reservoirs. J. Petrol. Sci. Eng. 157, 958e970. https://doi.org/10.1016/j.petrol.2017.08.015.

Turta, A., Kapadia, P., Gadelle, C., 2020. Thai process: Determination of the quality of burning from gas composition taking into account the coke gasification and water-gas shift reactions. J. Petrol. Sci. Eng. 187, 106638. https://doi.org/10.1016/ j.petrol.2019.106638.

Wang, Y., Ren, S., Zhang, L., 2019. Mechanistic simulation study of air injection assisted cyclic steam stimulation through horizontal wells for ultra heavy oil reservoirs. J. Petrol. Sci. Eng. 172, 209e216. https://doi.org/10.1016/

j.petrol.2018.09.060.

Wei, W., Wang, J., Afshordi, S., Gates, I.D., 2020. Detailed analysis of Toe-to-Heel Air Injection for heavy oil production. J. Petrol. Sci. Eng. 186, 106704. https:// doi.org/10.1016/j.petrol.2019.106704.

Weissman, J.G., 1997. Review of processes for downhole catalytic upgrading of heavy crude oil. Fuel Process. Technol. 50, 199e213. https://doi.org/10.1016/ S0378-3820(96)01067-3.

Weissman, J.G., Kessler, R.V., Sawicki, R.A., Belgrave, J.D.M., Laureshen, C.J., Mehta, S.A., Moore, R.G., Ursenbach, M.G., 1996. Down-hole catalytic upgrading of heavy crude oil. Energy & Fuels 10, 883e889. https://doi.org/10.1021/ ef9501814.

Xia, T., Greaves, M., 2006. In situ upgrading of Athabasca tar sand bitumen using Thai. Chem. Eng. Res. Des. - Chem. Eng. Res. Des. 84, 856e864. https://doi.org/ 10.1205/cherd.04192.

Xia, T., Greaves, M., 2001. 3-D physical model studies of downhole catalytic upgrading of Wolf Lake heavy oil using Thai. In: Canadian International Petroleum Conference.

Xia, T., Greaves, M., Turta, A., 2005. Main mechanism for stability of Thai-Toe-toHeel air injection. J. Can. Pet. Technol. 44.

Xia, T.X., Greaves, M., 2002. Upgrading Athabasca tar sand using toe-to-heel air injection. J. Can. Pet. Technol. 41, 7. https://doi.org/10.2118/02-08-02.

Xia, T.X., Greaves, M., Werfilli, W.S., Rathbone, R.R., 2002. Downhole conversion of Lloydminster heavy oil using Thai-CAPRI process. In: SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference.

Yui, S.M., Sanford, E.C., 1989. Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils: kinetics, product yields, and product properties. Ind. Eng. Chem. Res. 28, 1278e1284. https://doi.org/10.1021/ie00093a002.

Zhang, X., Liu, Q., Fan, Z., Liu, Y., 2019. Enhanced heavy oil recovery and performance by application of catalytic in-situ combustion. Petrol. Sci. Technol. 37, 493e499. https://doi.org/10.1080/10916466.2018.1482333.

Zhao, D.W., Wang, J., Gates, I.D., 2014. Thermal recovery strategies for thin heavy oil reservoirs. Fuel 117, 431e441. https://doi.org/10.1016/j.fuel.2013.09.023.

Zhao, D.W., Wang, J., Gates, I.D., 2013. Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs. Fuel 112, 50e59. https:// doi.org/10.1016/j.fuel.2013.05.025.

Edmundo.Salazar@Yandex.com

 



Esta nota ha sido leída aproximadamente 1837 veces.



Edmundo Salazar

Experto en petróleo y gas

 edmundosalazar@gmail.com

Visite el perfil de Edmundo Salazar para ver el listado de todos sus artículos en Aporrea.


Noticias Recientes: